Comparative Study of Different Data Mining Techniques in Predicting Forest Fire in Lebanon and Mediterranean
Titre | Comparative Study of Different Data Mining Techniques in Predicting Forest Fire in Lebanon and Mediterranean |
Type de publication | Communications avec actes |
Année de publication | 2016 |
Langue | Anglais |
Titre de la Conférence/colloque | Proceedings of SAI Intelligent Systems Conference (IntelliSys) |
Titre des actes ou de la revue | Lecture Notes in Networks and Systems |
Volume | 1 |
Pagination | 747 - 762 |
Auteur(s) | Hamadeh, N., Karouni A., Daya B. et Chauvet P. |
Directeur(s) | Bi, Y., Kapoor S. et Bhatia R. |
Université, Editeur | Springer International Publishing |
Ville, Pays | London, UK |
Numéro ISBN | 978-3-319-56994-9 |
Résumé | Forest fire is one of the most complex phenomena which can cause great economic losses and make eco-environment seriously disordered. Forest fire has caused the loss of many green acres in Lebanon due to the lack of governmental policies in order to mange forest fires. This paper presents an overview of the exciting applications of data mining techniques in different fields. This study aims to predict forest fires in North Lebanon in order to reduce fire occurrence based on 4 meteorological parameters (Temperature, Humidity, Precipitation and Wind speed) using different data mining techniques: Neural networks, decision tree (J48), fuzzy logic, support vector machine (SVM) and linear discriminant analysis (LDA). A comparative study is then made to find the best performing technique tending to manage such a natural crisis. Decision tree (J48) recorded the best accuracy in forest fire prediction (97.8%). |
DOI | 10.1007/978-3-319-56994-9_51 |